Solving linear equations over GF(2): block Lanczos algorithm

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Homogeneous Linear Equations over Gf(2) via Block Wiedemann Algorithm

We propose a method of solving large sparse systems of homogeneous linear equations over GF(2), the field with two elements. We modify an algorithm due to Wiedemann. A block version of the algorithm allows us to perform 32 matrix-vector operations for the cost of one. The resulting algorithm is competitive with structured Gaussian elimination in terms of time and has much lower space requiremen...

متن کامل

‎A matrix LSQR algorithm for solving constrained linear operator equations

In this work‎, ‎an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$‎ ‎and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$‎ ‎where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$‎, ‎$mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$‎, ‎$ma...

متن کامل

A Block Lanczos Algorithm for Finding Dependencies Over GF(2)

Some integer factorization algorithms require several vectors in the null space of a sparse m x n matrix over the field GF(2). We modify the Lanczos algorithm to produce a sequence of orthogonal subspaces of GF(2)", each having dimension almost N, where N is the computer word size, by applying the given matrix and its transpose to N binary vectors at once. The resulting algorithm takes about n ...

متن کامل

Solving sparse linear equations over finite fields

Ahstruct-A “coordinate recurrence” method for solving sparse systems of linear equations over finite fields is described. The algorithms discussed all require O( n,( w + nl) logkn,) field operations, where nI is the maximum dimension of the coefficient matrix, w is approximately the number of field operations required to apply the matrix to a test vector, and the value of k depends on the algor...

متن کامل

Solving Linear Equations over Polynomial Semirings

We consider the problem of solving linear equations over various semirings. In particular, solving of linear equations over polynomial rings with the additional restriction that the solutions must have only non-negative coefficients is shown to be undecidable. Applications to undecidability proofs of several unification problems are illustrated, one of which, unification modulo one associative-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1993

ISSN: 0024-3795

DOI: 10.1016/0024-3795(93)90235-g